Calculation helps

Multiplication (x)

\begin{tabular}{|c|c|}
\hline Year 1 \& Year 2 \\
\hline \begin{tabular}{l}
Children experience counting equal group of objects in \(2 s, 5 s\) and \(10 s\). \\
Present practical problem solving activities involving counting equal sets or groups, as above. \\
How many legs will 3 teddies have? \\
How many frogs on the lily pads \\
There are 3 sweets in one bag. How many sweets are in 5 bags altogether?
\end{tabular} \& \begin{tabular}{l}
Use repeated addition on a number line \\
Starting from zero, make equal jumps up on a number line to work out multiplication facts and write multiplication statements using \(\times\) and \(=\) signs. \\
Use arrays

$5 \times 3=15$

$$
3 \times 5=15
$$

$$
5 \times 2=2 \times 5
$$

$$
5 \times 3=3+3+3+3+3=15
$$

$$
3 \times 5=5+5+5=15
$$

Use arrays to help teach children to understand the commutative law of multiplication, and give examples such as $3 \times \ldots=6$.
\end{tabular}

\hline
\end{tabular}

Calculation helps

Division (\div)

Discuss division as both grouping and sharing 1
Grouping
How many groups of 4 can be made with 12 stars? $=3$

Calculation helps

Addition (+)

Year 1	Year 2
Count all	Add 10s then add units using a number line.
Record as $8+5=13$	
Counting on	
	$46+27=73$ (bridging tens when 10 s are added)
Record as $8+5=13$	Step 1) Partition numbers then recombine Start with numbers that do not cross 10 s boundary
Progress to showing this on a number line	$\begin{array}{r} 20+3 \\ +30+4 \\ \hline 50+7 \end{array}$
$\sim \sim$	Step 2) Pupils then progress to numbers which cross the tens boundary. NOTE: Children must be secure in their mental addition of numbers within 20 at this step.
7 8 9 10 11 12 13 14 15 16	$50+8$
	$40+3$
Record as $9+6=15$	$90+11$
$\bigcirc 000-\infty$	$=101$
Bead strings can be used to illustrate addition including bridging 10	Confident and accurate children can also use this method for numbers with 3 digits.

Calculation helps

Subtraction (-)

Year 1	Year 2
Take away $7-4=3$ Count back on a number track, then number line in ones with numbers up to 20. $15-6=9$ Finding the differencel distance between. 7 4 7 is 3 more than $4(7-\ldots=4)$ Children record this using (-) and (=) signs. E.g 7-3=4 Using a number line to count on showing the blocks alongside 16-_ = 9 diffence between 9 and $16=7$	Take away 47-23 Partition the $2^{\text {nd }}$ number in to tens and units. Subtract the tens then the units. Move on to more efficient methods s Finding the difference Difference between 73 and 58 (73-_ = 58) Develop understanding of inverse 58 + \qquad $=73$ Bridging 10s

